name: code run_id: commands[0] env LANG: C.UTF-8 env HOME: /home/jenkins env PATH: /w/workspace/ric-app-ad-tox-sonarqube/.tox/code/bin:/opt/pyenv/bin:/tmp/venv-lUCk/bin:/opt/pyenv/shims:/home/jenkins/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/opt/puppetlabs/bin env PYTHONHASHSEED: 3968082275 env PIP_DISABLE_PIP_VERSION_CHECK: 1 env PYTHONIOENCODING: utf-8 env LD_LIBRARY_PATH: /usr/local/lib/:/usr/local/lib64 env PYTHONPATH: /w/workspace/ric-app-ad-tox-sonarqube:src:/usr/lib/python3.7/site-packages/ env RMR_SEED_RT: tests/fixtures/test_local.rt env RMR_ASYNC_CONN: 0 env USE_FAKE_SDL: 1 env TOX_ENV_NAME: code env TOX_WORK_DIR: /w/workspace/ric-app-ad-tox-sonarqube/.tox env TOX_ENV_DIR: /w/workspace/ric-app-ad-tox-sonarqube/.tox/code env VIRTUAL_ENV: /w/workspace/ric-app-ad-tox-sonarqube/.tox/code env TOX_PACKAGE: /w/workspace/ric-app-ad-tox-sonarqube/.tox/.tmp/package/1/ad-1.0.1.tar.gz metadata pid: 2652 cwd: /w/workspace/ric-app-ad-tox-sonarqube allow: /w/workspace/ric-app-ad-tox-sonarqube/.tox/code/bin/* cmd: pytest -v --cov src --cov-report xml --cov-report term-missing --cov-report html --cov-fail-under=50 exit_code: 1 ============================= test session starts ============================== platform linux -- Python 3.10.6, pytest-8.3.4, pluggy-1.5.0 -- /w/workspace/ric-app-ad-tox-sonarqube/.tox/code/bin/python cachedir: .tox/code/.pytest_cache rootdir: /w/workspace/ric-app-ad-tox-sonarqube plugins: cov-6.0.0 collecting ... collected 4 items tests/test_ad.py::test_database_connection PASSED [ 25%] tests/test_ad.py::test_trainModel FAILED [ 50%] tests/test_ad.py::test_predict_anomaly FAILED [ 75%] tests/test_ad.py::test_msg_to_ts PASSED [100%] =================================== FAILURES =================================== _______________________________ test_trainModel ________________________________ monkeypatch = <_pytest.monkeypatch.MonkeyPatch object at 0x7fe160587a30> def test_trainModel(monkeypatch): > main.train_model() tests/test_ad.py:28: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ src/main.py:62: in train_model mt.train() src/ad_train.py:122: in train f1, model = self.isoforest() src/ad_train.py:89: in isoforest md = model.fit(self.train_data.values) .tox/code/lib/python3.10/site-packages/sklearn/base.py:1389: in wrapper return fit_method(estimator, *args, **kwargs) .tox/code/lib/python3.10/site-packages/sklearn/model_selection/_search.py:1023: in fit self._run_search(evaluate_candidates) .tox/code/lib/python3.10/site-packages/sklearn/model_selection/_search.py:1950: in _run_search evaluate_candidates( .tox/code/lib/python3.10/site-packages/sklearn/model_selection/_search.py:969: in evaluate_candidates out = parallel( .tox/code/lib/python3.10/site-packages/sklearn/utils/parallel.py:77: in __call__ return super().__call__(iterable_with_config) .tox/code/lib/python3.10/site-packages/joblib/parallel.py:1918: in __call__ return output if self.return_generator else list(output) .tox/code/lib/python3.10/site-packages/joblib/parallel.py:1847: in _get_sequential_output res = func(*args, **kwargs) .tox/code/lib/python3.10/site-packages/sklearn/utils/parallel.py:139: in __call__ return self.function(*args, **kwargs) .tox/code/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:858: in _fit_and_score X_train, y_train = _safe_split(estimator, X, y, train) .tox/code/lib/python3.10/site-packages/sklearn/utils/metaestimators.py:156: in _safe_split X_subset = _safe_indexing(X, indices) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ X = array([[ 3.77292128e-01, 2.86786711e-02, 1.11735082e-04, ..., -3.75802327e-01, -4.02027834e-03, 1.21858569e...0016081e-02, 7.00032162e-05, ..., -5.88727048e-01, -2.85562268e-02, 1.17085036e-02]], shape=(10000, 7)) indices = array(slice(None, None, None), dtype=object) def _safe_indexing(X, indices, *, axis=0): """Return rows, items or columns of X using indices. .. warning:: This utility is documented, but **private**. This means that backward compatibility might be broken without any deprecation cycle. Parameters ---------- X : array-like, sparse-matrix, list, pandas.DataFrame, pandas.Series Data from which to sample rows, items or columns. `list` are only supported when `axis=0`. indices : bool, int, str, slice, array-like - If `axis=0`, boolean and integer array-like, integer slice, and scalar integer are supported. - If `axis=1`: - to select a single column, `indices` can be of `int` type for all `X` types and `str` only for dataframe. The selected subset will be 1D, unless `X` is a sparse matrix in which case it will be 2D. - to select multiples columns, `indices` can be one of the following: `list`, `array`, `slice`. The type used in these containers can be one of the following: `int`, 'bool' and `str`. However, `str` is only supported when `X` is a dataframe. The selected subset will be 2D. axis : int, default=0 The axis along which `X` will be subsampled. `axis=0` will select rows while `axis=1` will select columns. Returns ------- subset Subset of X on axis 0 or 1. Notes ----- CSR, CSC, and LIL sparse matrices are supported. COO sparse matrices are not supported. Examples -------- >>> import numpy as np >>> from sklearn.utils import _safe_indexing >>> data = np.array([[1, 2], [3, 4], [5, 6]]) >>> _safe_indexing(data, 0, axis=0) # select the first row array([1, 2]) >>> _safe_indexing(data, 0, axis=1) # select the first column array([1, 3, 5]) """ if indices is None: return X if axis not in (0, 1): raise ValueError( "'axis' should be either 0 (to index rows) or 1 (to index " " column). Got {} instead.".format(axis) ) indices_dtype = _determine_key_type(indices) if axis == 0 and indices_dtype == "str": > raise ValueError("String indexing is not supported with 'axis=0'") E ValueError: String indexing is not supported with 'axis=0' .tox/code/lib/python3.10/site-packages/sklearn/utils/_indexing.py:242: ValueError ----------------------------- Captured stdout call ----------------------------- {"ts": 1735432552867, "crit": "DEBUG", "id": "ad_train", "mdc": {}, "msg": "Training on 10000 Samples"} {"ts": 1735432552875, "crit": "DEBUG", "id": "ad_train", "mdc": {}, "msg": "Validation on 10000 Samples"} {"ts": 1735432552875, "crit": "DEBUG", "id": "ad_train", "mdc": {}, "msg": "Training Starts"} {"ts": 1735432552915, "crit": "INFO", "id": "ad_train", "mdc": {}, "msg": "Training Isolation Forest"} _____________________________ test_predict_anomaly _____________________________ monkeypatch = <_pytest.monkeypatch.MonkeyPatch object at 0x7fe15fb716c0> ad_ue = du-id ServingCellId RRU.PrbUsedDl ... x y measTimeStampRf 0 1002 c2/B13 8 ... -882 -959 2021-05-12 07:43:51.652 [1 rows x 12 columns] def test_predict_anomaly(monkeypatch, ad_ue): main.load_model() > main.predict_anomaly(monkeypatch, ad_ue) tests/test_ad.py:33: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ src/main.py:99: in predict_anomaly df['Anomaly'] = md.predict(df) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = df = du-id ServingCellId RRU.PrbUsedDl ... x y measTimeStampRf 0 1002 c2/B13 8 ... -882 -959 2021-05-12 07:43:51.652 [1 rows x 12 columns] def predict(self, df): """ Load the saved model and return predicted result. Parameters ......... name:str name of model Return ...... pred:int predict label on a given sample """ self.data = df.loc[:, self.num] self.transformation() > pred = self.model.predict(self.data) E AttributeError: 'modelling' object has no attribute 'model' src/ad_model.py:78: AttributeError ----------------------------- Captured stdout call ----------------------------- {"ts": 1735432553262, "crit": "ERROR", "id": "ad_model", "mdc": {}, "msg": "Model Does not exsist"} {"ts": 1735432553263, "crit": "INFO", "id": "src.main", "mdc": {}, "msg": "throughput threshold parameter is set as 70% (default)"} =============================== warnings summary =============================== tests/test_ad.py::test_trainModel tests/test_ad.py::test_trainModel /w/workspace/ric-app-ad-tox-sonarqube/src/processing.py:52: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. A typical example is when you are setting values in a column of a DataFrame, like: df["col"][row_indexer] = value Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self.data.iloc[:]['DRB.UEThpDl'] = self.data['DRB.UEThpDl'].apply(lambda x: x*1024) -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html ---------- coverage: platform linux, python 3.10.6-final-0 ----------- Name Stmts Miss Cover Missing ------------------------------------------------- src/__init__.py 0 0 100% src/ad_model.py 67 34 49% 41, 50-51, 57-58, 79-80, 98-115, 119-130 src/ad_train.py 69 22 68% 56-58, 66-68, 90-91, 94-101, 123-129 src/database.py 94 36 62% 64-75, 85-97, 106-110, 113-118, 161, 164 src/exceptions.py 4 4 0% 18-25 src/insert.py 50 50 0% 21-84 src/main.py 116 75 35% 41-46, 70-83, 100-114, 119-130, 139, 146-163, 167-170, 174-177, 181-185, 190-192 src/processing.py 44 0 100% ------------------------------------------------- TOTAL 444 221 50% Coverage HTML written to dir htmlcov Coverage XML written to file coverage.xml Required test coverage of 50% reached. Total coverage: 50.23% =========================== short test summary info ============================ FAILED tests/test_ad.py::test_trainModel - ValueError: String indexing is not... FAILED tests/test_ad.py::test_predict_anomaly - AttributeError: 'modelling' o... =================== 2 failed, 2 passed, 2 warnings in 17.09s ===================