.. This work is licensed under a Creative Commons Attribution 4.0 International License. .. http://creativecommons.org/licenses/by/4.0 .. Copyright (c) 2023 Samsung Electronics Co., Ltd. All Rights Reserved. User-Guide ========== .. contents:: :depth: 3 :local: Overview -------- Model Management Service works with AIML Framework to manage the life cycle of trained AIML models, such as creating a model, storing the trained model, storing the trained model info. It exposes REST based API to work with models. Steps to build and run Model Management Service Standalone ----------------------------------------------------------- Prerequisites #. Install go Steps .. code:: bash git clone "https://gerrit.o-ran-sc.org/r/aiml-fw/awmf/modelmgmtservice.git" cd modelmgmtservice | Update ENV variables in config.env | Execute below commands .. code:: bash export $(< ./config.env) go get go build -o mme_bin . ./mme_bin Steps to run Model Management Service using AIMLFW deployment scripts ---------------------------------------------------------------------- Follow the steps in this link: `AIMLFW installation guide `__ APIs and samples ----------------- #. Registering a model in Model Management Service Sample model-name value is "qos_301" .. code:: bash curl -i -H "Content-Type: application/json" \ -X POST \ -d '{"model-name":"qos_301", "rapp-id": "rapp_1", "meta-info" : {"accuracy":"90","model-type":"timeseries","feature-list":["pdcpBytesDl","pdcpBytesUl"]}}' \ http://127.0.0.1:32006/registerModel #. Fetch trained model information from Model Management Service .. code:: bash curl -X GET http://127.0.0.1:32006/getModelInfo/qos_301 #. Upload a trained AIML Model to Model Management Service .. code:: bash curl -F "file=@" http://127.0.0.1:32006/uploadModel/qos_301 #. Download a trained model from Model Management Service .. code:: bash curl -X GET http://127.0.0.1:32006/downloadModel/qos_301/model.zip --output model.zip